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Abstract

 This paper describes how a new class of composite sandwich plates
is implemented to control vibration of the bending and torsional modes using
built-in Active Constrained Layer Damping (ACLD). The paper also gives an
insight into the fundamentals governing the dynamics and active/passive
control of smart composite sandwiched plate structures to use as the potential
basic building block of structures where effective vibration damping is
essential to their successful operation.

To improve predictions of the dynamics and controlled vibration of the
composite sandwiched plate/ACLD, a powerful assumed displacement field for
the finite element modeling is introduced. This assumed displacement field
differs from the classical laminated theory and offers a definite advantage in
finite element modeling as it gives a displacement distribution along the whole
thickness of the laminates and requires fewer degrees of freedoms to
represent the kinematical relationships for viscoelastic layers with
piezoelectric  layers in ACLD. Also, the predictions of the finite element model
using this assumed displacement field have been validated by comparing of
modal frequencies and damping loss factors with experiment and are found to
be in close agreement.



Outline of Presentation

z   Introduction

z   Active Constrained Layer Damping (ACLD)

z   Theoretical Development  (Finite Element Modeling)

z   Experimental Performance

z   Comparison between Theory & Experiments

z   Summary



Passive and active layer damping
(a)-Passive: unconstrained
(b)-Passive: constrained
 (c)-Active: constrained



Viscoelastic material

Variation of storage modulus, and loss factor, with  temperature
[Nashif et al. 1985]

Variation of storage modulus, and loss factor,  with  frequency
 [Nashif et al. 1985]
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Interaction processes between the
electrical, mechanical, and thermal system

[Ikeda Takuro; Fundamental of Piezoelectricity,1990]



Active constrained layer damping

•   Combines active & passive damping control
•   Enhances energy dissipation characteristics



Operating principle of sandwiched
plate/ACLD system.



Theoretical  Development
(Formulation)

z   Displacement Field

z   Displacement-Strain

z   Stress-Strain

z   Sensor & Actuator Equation

z   Equation of Motion



Schematic drawing of six-layer cantilever
plate/ACLD system

Composite sandwiched plate coordinate



Displacement field
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the i th layer due to bending in the x and y directions, respectively



Displacement-Strain Relations
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Stress-Strain Relation
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Sensor & Actuator Equation
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Equation of Motion & Eigenvalue Analysis
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where ω *2  are complex eigenvalues.

The n th eigenvalue is written as follows:
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Experimental setup for composite
sandwiched plate/ACLD



Response to random excitations
for bending control
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Response to random excitations
for torsion control
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Comparison between theory &
experiments for first bending mode

 with different control gains
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Comparison between theory &
experiments for second bending mode

 with different control gains

30.00 31.00 32.00 33.00 34.00 35.00

Theoretical Natural Frequency (Hz)

30.00

31.00

32.00

33.00

34.00

35.00

E
xp

er
im

en
ta

l N
at

ur
al

 F
re

qu
en

cy
 (H

z) PCLD
ACLD, Gain A
ACLD, Gain B
ACLD, Gain C

(a)

0.00 0.02 0.04 0.06 0.08 0.10

Theoretical Loss Factor

0.00

0.02

0.04

0.06

0.08

0.10

E
xp

er
im

en
ta

l L
os

s 
Fa

ct
or

PCLD
ACLD, Gain A
ACLD, Gain B
ACLD, Gain C

(b)



Comparison between theory &
experiments for torsional mode

 with different control gains
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Summary

z   Introduced a a new class of composite sandwiched plates

z   Developed the theoretical analysis of a composite plate/ACLD

z   Theoretical Analysis was validated experimentally

z  The ACLD is found to be effective in controlling the vibration
    of the plates


